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Abstract. In this paper we introduce the concept of cyclic boson algebra and study its 
representations. Using this algebra to realize dq(3), we ~ o n s f r u ~ t  the cyclic representation 
of the quantum universal enveloping algebra Uq(sI(3))=slq(3) on the q-Fock space. 
Restricting this representation to the subalgebra sl,(Z) (cdq(3)),  we naturally obtain the 
irreducible cyc!ic replescn!a!ion5 Qf S!<(Z); 

1. Introduction 

Quantum group, quantum algebra (q-analogue of a universal enveloping algebra) and 
their representation theory play a crucial role in the construction of solutions ( R -  
matrices) to the quantum Yang-Baxter equation (QYBE) [ 1-51, Recently, the representa- 
tions of quantum algebras at roots of unity have attracted much attention in both the 
mathematical field [6-81 and the physical field [9-131. Concini and Kac, especially, 
have made a systematical study on the representation theory of quantum algebras in 
the case that q is a root of unity, and Date, Jimbo, Mike and Miwa, motivated by the 
problems in the Potts model, have given some concrete cyclic representations studied 
theoreticaiiy by Concini and Kac. 

The aim of this paper is to try to establish a procedure to construct explicitly the 
cyclic representations of a quantum algebra through the q-deformed boson realization 
[ 14-19]. The so-called realization theory originated from the Jordan-Schwinger map- 
ping of Lie algebras [18] and was later generalized to associative algebras, including 
quantum algebras [14-171. To get a clear picture of the realization method, let us 
review it. Suppose A and S are two associative algebras over the complex number 
field C. If there exists a homomorphic mapping 9 : A +  S such that the image q ( A )  is 
a subalgebra of S, then p(A) is called an S-realization of A. In fact, q ( A )  defines an 
operator representation of A. As a result, a representation of S naturally subduces a 
representation of A = q ( A )  c S. We call this subduced representation an S-realization 
of the representation of A. In a practical problem, S is always chosen to be ‘simpler’ 
h a  A, by which we mean !hat it ir easier to obtain the representations of S than !o 
obtain those of A. About this realization method there are the following three cases 
worth mentioning: 
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(i) A is a Lie algebra; S is the Heisenberg-Weyl algebra generated by the creation 
operators and annihilation operators or the differential algebra generated by the 
operators Z and d / d Z  on the Bargmann space [19-211. Correspondingly, q ( A )  is 
called a boson realization or a differential realization. 

(ii) A is a quantum algebra; S is the q-deformed boson algebra or the differential 
algebra. In this case, p(A)  is called a q-deformed boson (or oscillator) realization and 
a differential realization respectively [9,22]. 

(iii) A is a quantum algebra; S is an associative algebra generated by X, Z and 1 
satisfying XZ = qZX and ZN = X N  = 1. So far as we know, this realization first appears 
in [23], where it is used to construct cyclic representations of some quantum algebras. 

In this paper, we will introduce an associative algebra called cyclic boson algebra 
and choose it as the above-mentioned S. Thus, the realization to be obtained is what 
we call cyclic boson realization, which, as will he seen, is the key to  all our discussion. 
This paper is constructed as follows. In section 2 we give the definition of the cyclic 
boson algebra and construct its representations; in section 3, some realizations of the 
quantum algebra s1,(3) and its subalgebra s1,(2) are listed; in section 4, the cyclic 
representation of s1,(3) is constructed on the cyclic Fock space; in section 5 ,  we discuss 
the representation of SI,@) resulting from that of s1,(2) as a subalgebra. 

2. Cyclic boson algebra and its representations 

Let us first recall the definition of the q-deformed boson algebra B, [15-181. As is 
known, it is defined as an associative algebra over C generated by the q-deformed 
boson operators a', a ;  = ai and Q: = q*" satisfying the relations 

where q E @. Now, we have: 

Proposition 1. If q is a primitive pth root of unity, i.e. q" = 1, the elements a" and 
Q;" ( i  = 1 , 2 , .  . . , I) belong to the centre of B4. 

Proof: The proof follows from the equations 

where [n] = (q"  - q - " ) / ( q - q - ' ) .  Using equation (2.1). one can easily prove them by 
induction. 0 

Since (a')" are central elements of B,, we can restrict them to be constants without 
causing contradictions in the algebraic structure. 

Definition 1.  A cyclic boson algebra is an associative algebra generated by a' and Q;. 
which satisfy equation (2.1) and 

(a')"=(j*EB). (2.3) 
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Having given the definition, we now turn to consider its representation. In the following 
we denote the cyclic boson algebra by & ( I ) .  Let 

U, = U(@,. cL2.. . . , PI) 

QAJ, = q'fv,. (2 .4)  

( w i € C , i = l , 2  ,..., I )  
be such a common eigenstate of Qj ( i  = 1.2, , . . , I )  that 

As a result of equation (2.4) we call it a cyclic vacuum state. 

Definition 2. The cyclic Fock space 9 J l )  is a span of the linear-independent states 

F ( m j ) =  F ( m , ,  m2.  ..., ml)=a:"'ha;"2.. .a:'%, 

m j e { 0 , 1 , 2  ,..., p-1) i = 1 , 2  ,..., 1. 

Proposition 2. If the parameters p j  satisfy 

rpj1 rpj + l ] [ P j  + 2 1 .  . . rpj + p  - 1 I = &+ I & -  

then equation (2.5) defines a p'-dimensional irreducible representation p:  E , ( / )  + 

cno(z+,(rij or & ( i j .  

Proof: ForI=l ,wedenote&, Q:,a;and F(m,)by~*,Q",a*andF(m)respectively.  
Then, we rewrite equation (2 .5)  as 

- .,_,.\\ * . . I . \  

a + F ( m ) = F ( m + l )  O e m s p - 2  
a + F ( p  - 1 )  = t+F(O) 

a F ( m )  = [ m +,u]F( m - 1 )  

aF(O) = Cpl(t++)-'F(~ - 1) 

(2 .6a)  

(2 .66)  

( 2 . 6 ~ )  

l Smsp-1 
I 
I 
Q * F ( m )  = q*"'"F(m). 

It follows from (2.66) that - n P F ( n \ - ( c  * ,",-15+, \ - l r , , i r , , ~ ~ ~ , , , r , , + " - l i ~ / n ~  L P J L I "  LI" Y L,' I",. (2.7) 

a P F ( 0 ) =  c_F(O). (2.8) 

On the other hand, from equation (2.3) one has 

Comparing (2.7) with (2 .8) ,  we get 

t+. t - = r P l r P + 1 1  ... rPfP-11. 

For an arbitrary l, the proof is the same. It is easy to check that when equations 
(2 .6a-c)  are satisfied all the relations in (2.2) and (2 .3 )  will be kept on the cyclic Fock 
space gC(l). In other words, (2.5) defines a representation of E c ( l ) .  The dimension 

0 and irreducibility of this representation follow from (2 .5)  directly. 
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3. The cyclic boson realization of s1,(3) and sl,(2) 

The cyclic boson realization rp(sl,(k)) = {g = g(g) I g E sl,(k)} is determined by a homo- 
morphic mapping rp:sl,(k)+ &(/). In this section, we consider s1,(2) and s1,(3). We 
would like to point out that for a quantum algebra, there may exist many different 
realizations. 

a ---" 2 =--&Le -.."- t..- ..t--L---l /?\ ... L:-L:- -^ --_" .-AL.. r -__I v + -  .*J; 
1 '"yV""1u" 2. I'UL L l l G  q"P"Lu"1 n r ~ r u l a  3lu{L, ,  W111G111D g,F,,r;,arcu v y  J* allu n = y 
satisfying 

[J+J-l = [ J J  [ J , , J J = * 2 J +  (3.1) 

the following mappings define three cyclic boson realizations: 
(i) rp:s19(2)+Bc(1): 

(3.2) 
k'=Q * 2  9 T A  .?+=at j -  = a [ A  + 1 - N ]  

(ii) rp :slq(2)+ B,(2): 

k* = Q: 'Q;~ (3.3) 
- +  - t  J + = a , a 2  J- = a 2 a ,  

(iii) rp:s19(2)+Bc(2): 

.?+=a: .?_ = a:+ a , [ 2 N z -  N ,  + A ]  k* = Qf2QT29'^. (3.4) 

Proof: The proof follows from the observation that a,ai = [Nj + 11, a:., = [ N j ]  and 
0 a : a f = a f a :  (i#j), which is equivalent to (2.1). 

For the quantum algebra s1,(3) generated by  E,,  fi  and X :  ( i =  1,2)  satisfying 

K ~ - K ; '  
9 - 9-' 

[ E i ,  F,]  = 8, 

we have the following proposition. 

Proposition 4. There exists a realization of s1,(3) determined by rp: s1,(3)+ B J 3 )  
- t  E , = a ,  

,?- , - 9 - A  ta:a,-a,[  N ,  - N 2 +  N,-  1 - A I ]  (3.6a) 

K: = qTAca"2 I QT'Q;' 
&= a:Q; ' -q - 'Q; 'a ,a :  

fizz Q3a2ii+A2-j\i2j-q!+*iQ;!a:a3 

K ;  = q ' A z ~ : 2 ~ : t ~ ; 1  

where A ,  and A 2  are complex parameters. 

(3.6:) 
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U Proof: The proof follows from direct calculation. 

It is worth pointing out that on the usual Fock spaces 9, 

{ l m )  = a+"lo)l ala) =o, Qlo) = 0) 

and YE2 
Ilm m \ = n + m L n + m d n \ l n  In\=" In\=n n I n \ = n l n \ = n l  
LI. '* l , , 'ZI  ~ -1  -2  1 " l l " l l " l  ~ -21") ~ "9 Yll", ~ Y 2 I " I  ~ "I 

where ai and a: ( i =  1,Z) only satisfy equation (Z.I), the realizations (3.2) and (3.6) 
define the so-called Verma representation of s1,(2) and the Verma representation of 
s1,(3) respectively. 



(4 . lb)  

- ql+A,-(m,+w,) 2 [' F(m,+ l ,m, ,p -1)  
53+ 

K ; F ( ~ ,  , m2,  m,) = ~ ~ i 2 l ~ ~ + ~ ~ ) - l m ~ + * , ) + ( m , + * , ) - A  ' 'F(m, ,  m2, m3) 

Proof: It is proved through lengthy but straightforward calculation. U 

Remark 1. When pi, ti+ # 0 ( i  = 1, Z), the representation (4.1) has neither the lowest 
nor the highest weight, and E :  and FP are non-zero constants in this representation. 
So it is an irreducible cyclic representation. In fact, according to  Kac and Concini, 
the dimension D of an irreducible representation of a quantum algebra G, satisfies 

D<p" m = (dim G-rank G)/2 (4.2) 

where dim G and rank G are respectively the dimension and the rank of the Lie algebra 
G corresponding to the quantum algebra. For s1,(3), dim G = 8, rank = 2 and m = 3. 
Thus, the representation (4.1) is an irreducible cyclic representation with the maximum 
dim ens i o n . 
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Remark2 If [pi] = 0 ( i  = 1,2), (4.1) determines arepresentation with the lowest weight, 
which can be obtained on the cyclic Verma module 

W m l ,  m2, m,)=E;“~E?E,”lu,lm,, m 2 , m 3 e Z + I  

where E : = & +  ( i=1 ,2 ,3 ) ,  F,uA=f2uA=O, K:v,,=qTAguA ( i = l , 2 )  and E,=  
E lE2-qE2E,  is the generator corresponding to the third root of Lie algebra A2. 

5. The boson representation of SI$) 

Since s1,(2) is a subalgebra of s1,(3), the restriction of the representation (4.1) to it 
naturally defines a representation of it. This representation is given by (4.la). According 
to Concini and Kac (see equation (4.2)), this p’-dimensional representation of s1,(2) 
is reducible. We are trying to find an irreducible cyclic representation from it. 

In (4 . la ) ,  we let pi = O  ( i=2 ,3 ) .  Then we obtain the representation of s1,(2): 

E ,F (ml ,  m 2 , m 3 ) = F ( m , + l ,  m 2 , m J  ( m , # p - l )  

EP(p-1,  mz, m3)=51+F(0, m2, m3) 

F P ( m l ,  m2, m3) 

= q-*x[m,lF(ml, m2+ 1, m3- 1) - [ m , + ~ ~ l [ ( m , + ~ J - m ~ +  m3- 1 -.\,I 
x F ( m , - l , m 2 , m 3 )  ( m  # 0, m 2 # p - l ,  m, # O )  

p-1, m3)= - [ m , + ~ ~ l [ m , + m ~ + ~ ~  - . \ I I F ( m , - L ~  - 1, m3) (5.1) 

FIF(O, m2.  m,) 

=q-*l[m,]F(O, m 2 + l ,  m,-1) 

-- [’I’ [ ~ ~ - m ~ + m , - l - A ~ ] F ( p - l ,  m,, m3) 
51 + 

F I F ( m , ,  m 2 , 0 )  = - [ m , + ~ J [ m , + p ~  - m 2 -  1 -AIIF(m,  -1, m2, 01 
K f F ( m l ,  m,, m,) = q * ( z ( m x + * , ) - m , + m 3 - n  I ) F ( m , ,  m 2 ,  4. 
We note that V, 

{F(m, O,O)= F(m)jm =0, 1,2, .  . . , p  - l} 

is a p-dimensional invariant subspace for the representation defined by (5.1), so we 
have: 

Proposition 6. On the space V,, the representation (5.1) subduces an irreducible cyclic 
representation of s1,(2) 

E , F ( m )  = F ( m  + 1) ( m g p - 1 )  

F , F ( m ) = [ m + ~ L l l [ l + A , - ( m + ~ , ) ] .  F ( m - 1 )  ( m # o )  

E I F ( P - ~ ) = S ~ + F ( O )  



168 C-P Sun et a1 

Remark When p = 0, this representation can be directly obtained on the cyclic Verma 
module 

I f ( m ) = E h l m E Z + }  
where E : = & + ,  F,u,,=O and K f o A L = q  T A  'U*,. 

5. Eh%! .lisc..ssis!! 

We have seen that the q-deformed boson realization is indeed a powerful method of 
constructing representations of a quantum algebra. I n  fact, not only can it greatly 
simplify the calculation made to obtain the explicit representations of a quantum 
algebra, but it can also stimulate one's imagination: the fact that the special cyclic 
boson (with [,& = O  and p = 2) satisfies a:'= 0 may lead one to make a guess at the 
relation between a general cyclic boson and an anyon. Finally we point out that the 
method discussed in this paper can be generalized to other quantum algebras in a 
straightforward way. 
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